Ultra-Fast and Sensitive Detection of Non-Typhoidal Salmonella Using Microwave-Accelerated Metal-Enhanced Fluorescence (“MAMEF”)

نویسندگان

  • Sharon M. Tennant
  • Yongxia Zhang
  • James E. Galen
  • Chris D. Geddes
  • Myron M. Levine
چکیده

Certain serovars of Salmonella enterica subsp. enterica cause invasive disease (e.g., enteric fever, bacteremia, septicemia, meningitis, etc.) in humans and constitute a global public health problem. A rapid, sensitive diagnostic test is needed to allow prompt initiation of therapy in individual patients and for measuring disease burden at the population level. An innovative and promising new rapid diagnostic technique is microwave-accelerated metal-enhanced fluorescence (MAMEF). We have adapted this assay platform to detect the chromosomal oriC locus common to all Salmonella enterica subsp. enterica serovars. We have shown efficient lysis of biologically relevant concentrations of Salmonella spp. suspended in bacteriological media using microwave-induced lysis. Following lysis and DNA release, as little as 1 CFU of Salmonella in 1 ml of medium can be detected in <30 seconds. Furthermore the assay is sensitive and specific: it can detect oriC from Salmonella serovars Typhi, Paratyphi A, Paratyphi B, Paratyphi C, Typhimurium, Enteritidis and Choleraesuis but does not detect Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, Streptococcus pneumoniae, Haemophilus influenzae or Acinetobacter baumanii. We have also performed preliminary experiments using a synthetic Salmonella oriC oligonucleotide suspended in whole human blood and observed rapid detection when the sample was diluted 1:1 with PBS. These pre-clinical data encourage progress to the next step to detect Salmonella in blood (and other ordinarily sterile, clinically relevant body fluids).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Microwave-Accelerated Plasmonics: Application to Ultra-Fast and Ultra-Sensitive Clinical Assays

In recent years our laboratory has described the favorable effects of fluorophores in close proximity to metallic nanostructures (1-6). These include, increased system quantum yields (increased detectability) and much improved fluorophore photostabilities. These effects have led to many applications of metal-enhanced fluorescence (MEF) including, improved DNA detection (7, 8), enhanced ratiomet...

متن کامل

Microwave-accelerated metal-enhanced fluorescence: application to detection of genomic and exosporium anthrax DNA in <30 seconds.

We describe the ultra-fast and sensitive detection of the gene encoding the protective antigen of Bacillus anthracis the causative agent of anthrax. Our approach employs a highly novel platform technology, Microwave-Accelerated Metal-Enhanced Fluorescence (MAMEF), which combines the use of Metal-Enhanced Fluorescence to enhance assay sensitivity and focused microwave heating to spatially and ki...

متن کامل

Fast and sensitive DNA hybridization assays using microwave-accelerated metal-enhanced fluorescence.

A new, fast, and sensitive DNA hybridization assay platform based on microwave-accelerated metal-enhanced fluorescence (MAMEF) is presented. Thiolated oligonucleotide anchors were immobilized onto silver nanoparticles on a glass substrate. The hybridization of the complementary fluorescein-labeled DNA target with the surface-bound oligonucleotides was completed within 20 s upon heating with low...

متن کامل

Adaptation of red blood cell lysis represents a fundamental breakthrough that improves the sensitivity of Salmonella detection in blood

AIMS Isolation of Salmonella Typhi from blood culture is the standard diagnostic for confirming typhoid fever but it is unavailable in many developing countries. We previously described a Microwave Accelerated Metal Enhanced Fluorescence (MAMEF)-based assay to detect Salmonella in medium. Attempts to detect Salmonella in blood were unsuccessful, presumably due to the interference of erythrocyte...

متن کامل

Microwave-accelerated metal-enhanced fluorescence: an ultra-fast and sensitive DNA sensing platform.

In this paper, we investigated the effects of low-power microwave heating on the components of the recently described new approach to surface DNA hybridization assays, based on the Microwave-Accelerated Metal-Enhanced Fluorescence (MAMEF) platform technology. Thiolated oligonucleotides have been linked to surface-bound silver nanostructures which partially coat a glass slide. The addition of a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2011